\(\int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx\) [861]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 119 \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=-\frac {31 a^2 \log (1-\sin (c+d x))}{8 d}-\frac {a^2 \log (1+\sin (c+d x))}{8 d}-\frac {2 a^2 \sin (c+d x)}{d}-\frac {a^2 \sin ^2(c+d x)}{2 d}+\frac {a^4}{4 d (a-a \sin (c+d x))^2}-\frac {9 a^3}{4 d (a-a \sin (c+d x))} \]

[Out]

-31/8*a^2*ln(1-sin(d*x+c))/d-1/8*a^2*ln(1+sin(d*x+c))/d-2*a^2*sin(d*x+c)/d-1/2*a^2*sin(d*x+c)^2/d+1/4*a^4/d/(a
-a*sin(d*x+c))^2-9/4*a^3/d/(a-a*sin(d*x+c))

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2786, 90} \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=\frac {a^4}{4 d (a-a \sin (c+d x))^2}-\frac {9 a^3}{4 d (a-a \sin (c+d x))}-\frac {a^2 \sin ^2(c+d x)}{2 d}-\frac {2 a^2 \sin (c+d x)}{d}-\frac {31 a^2 \log (1-\sin (c+d x))}{8 d}-\frac {a^2 \log (\sin (c+d x)+1)}{8 d} \]

[In]

Int[(a + a*Sin[c + d*x])^2*Tan[c + d*x]^5,x]

[Out]

(-31*a^2*Log[1 - Sin[c + d*x]])/(8*d) - (a^2*Log[1 + Sin[c + d*x]])/(8*d) - (2*a^2*Sin[c + d*x])/d - (a^2*Sin[
c + d*x]^2)/(2*d) + a^4/(4*d*(a - a*Sin[c + d*x])^2) - (9*a^3)/(4*d*(a - a*Sin[c + d*x]))

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2786

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^5}{(a-x)^3 (a+x)} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {\text {Subst}\left (\int \left (-2 a+\frac {a^4}{2 (a-x)^3}-\frac {9 a^3}{4 (a-x)^2}+\frac {31 a^2}{8 (a-x)}-x-\frac {a^2}{8 (a+x)}\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = -\frac {31 a^2 \log (1-\sin (c+d x))}{8 d}-\frac {a^2 \log (1+\sin (c+d x))}{8 d}-\frac {2 a^2 \sin (c+d x)}{d}-\frac {a^2 \sin ^2(c+d x)}{2 d}+\frac {a^4}{4 d (a-a \sin (c+d x))^2}-\frac {9 a^3}{4 d (a-a \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.63 \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=-\frac {a^2 \left (31 \log (1-\sin (c+d x))+\log (1+\sin (c+d x))-\frac {2}{(-1+\sin (c+d x))^2}-\frac {18}{-1+\sin (c+d x)}+16 \sin (c+d x)+4 \sin ^2(c+d x)\right )}{8 d} \]

[In]

Integrate[(a + a*Sin[c + d*x])^2*Tan[c + d*x]^5,x]

[Out]

-1/8*(a^2*(31*Log[1 - Sin[c + d*x]] + Log[1 + Sin[c + d*x]] - 2/(-1 + Sin[c + d*x])^2 - 18/(-1 + Sin[c + d*x])
 + 16*Sin[c + d*x] + 4*Sin[c + d*x]^2))/d

Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.45

method result size
parallelrisch \(\frac {4 \left (\left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {31 \cos \left (2 d x +2 c \right )}{16}-\frac {31 \sin \left (d x +c \right )}{4}+\frac {93}{16}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (-\frac {\cos \left (2 d x +2 c \right )}{16}-\frac {\sin \left (d x +c \right )}{4}+\frac {3}{16}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\frac {5 \cos \left (2 d x +2 c \right )}{4}+\frac {\cos \left (4 d x +4 c \right )}{32}+\frac {9 \sin \left (d x +c \right )}{4}-\frac {\sin \left (3 d x +3 c \right )}{8}-\frac {41}{32}\right ) a^{2}}{d \left (\cos \left (2 d x +2 c \right )-3+4 \sin \left (d x +c \right )\right )}\) \(173\)
risch \(4 i a^{2} x +\frac {a^{2} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {i a^{2} {\mathrm e}^{i \left (d x +c \right )}}{d}-\frac {i a^{2} {\mathrm e}^{-i \left (d x +c \right )}}{d}+\frac {a^{2} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {8 i a^{2} c}{d}+\frac {i \left (-9 a^{2} {\mathrm e}^{i \left (d x +c \right )}-16 i a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+9 a^{2} {\mathrm e}^{3 i \left (d x +c \right )}\right )}{2 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4} d}-\frac {31 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{4 d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{4 d}\) \(195\)
derivativedivides \(\frac {a^{2} \left (\frac {\sin ^{8}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{8}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{2}-\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{2}\left (d x +c \right )\right )}{2}-3 \ln \left (\cos \left (d x +c \right )\right )\right )+2 a^{2} \left (\frac {\sin ^{7}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \left (\sin ^{7}\left (d x +c \right )\right )}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \left (\sin ^{5}\left (d x +c \right )\right )}{8}-\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{2} \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )}{d}\) \(206\)
default \(\frac {a^{2} \left (\frac {\sin ^{8}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{8}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{2}-\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{2}\left (d x +c \right )\right )}{2}-3 \ln \left (\cos \left (d x +c \right )\right )\right )+2 a^{2} \left (\frac {\sin ^{7}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \left (\sin ^{7}\left (d x +c \right )\right )}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \left (\sin ^{5}\left (d x +c \right )\right )}{8}-\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{2} \left (\frac {\left (\tan ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\tan ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )}{d}\) \(206\)
norman \(\frac {\frac {16 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {16 a^{2} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {15 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d}+\frac {25 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {11 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {11 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {25 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {15 a^{2} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {8 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {16 a^{2} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {8 a^{2} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}-\frac {31 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{4 d}-\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d}+\frac {4 a^{2} \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(303\)

[In]

int(sec(d*x+c)^5*sin(d*x+c)^5*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

4*((cos(2*d*x+2*c)-3+4*sin(d*x+c))*ln(sec(1/2*d*x+1/2*c)^2)+(-31/16*cos(2*d*x+2*c)-31/4*sin(d*x+c)+93/16)*ln(t
an(1/2*d*x+1/2*c)-1)+(-1/16*cos(2*d*x+2*c)-1/4*sin(d*x+c)+3/16)*ln(tan(1/2*d*x+1/2*c)+1)+5/4*cos(2*d*x+2*c)+1/
32*cos(4*d*x+4*c)+9/4*sin(d*x+c)-1/8*sin(3*d*x+3*c)-41/32)*a^2/d/(cos(2*d*x+2*c)-3+4*sin(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.41 \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=\frac {4 \, a^{2} \cos \left (d x + c\right )^{4} + 22 \, a^{2} \cos \left (d x + c\right )^{2} - 12 \, a^{2} - {\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 31 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (4 \, a^{2} \cos \left (d x + c\right )^{2} - 5 \, a^{2}\right )} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/8*(4*a^2*cos(d*x + c)^4 + 22*a^2*cos(d*x + c)^2 - 12*a^2 - (a^2*cos(d*x + c)^2 + 2*a^2*sin(d*x + c) - 2*a^2)
*log(sin(d*x + c) + 1) - 31*(a^2*cos(d*x + c)^2 + 2*a^2*sin(d*x + c) - 2*a^2)*log(-sin(d*x + c) + 1) - 2*(4*a^
2*cos(d*x + c)^2 - 5*a^2)*sin(d*x + c))/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) - 2*d)

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**5*sin(d*x+c)**5*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.81 \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=-\frac {4 \, a^{2} \sin \left (d x + c\right )^{2} + a^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + 31 \, a^{2} \log \left (\sin \left (d x + c\right ) - 1\right ) + 16 \, a^{2} \sin \left (d x + c\right ) - \frac {2 \, {\left (9 \, a^{2} \sin \left (d x + c\right ) - 8 \, a^{2}\right )}}{\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1}}{8 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/8*(4*a^2*sin(d*x + c)^2 + a^2*log(sin(d*x + c) + 1) + 31*a^2*log(sin(d*x + c) - 1) + 16*a^2*sin(d*x + c) -
2*(9*a^2*sin(d*x + c) - 8*a^2)/(sin(d*x + c)^2 - 2*sin(d*x + c) + 1))/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.86 \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=-\frac {8 \, a^{2} \sin \left (d x + c\right )^{2} + 2 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + 62 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) + 32 \, a^{2} \sin \left (d x + c\right ) - \frac {93 \, a^{2} \sin \left (d x + c\right )^{2} - 150 \, a^{2} \sin \left (d x + c\right ) + 61 \, a^{2}}{{\left (\sin \left (d x + c\right ) - 1\right )}^{2}}}{16 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^5*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/16*(8*a^2*sin(d*x + c)^2 + 2*a^2*log(abs(sin(d*x + c) + 1)) + 62*a^2*log(abs(sin(d*x + c) - 1)) + 32*a^2*si
n(d*x + c) - (93*a^2*sin(d*x + c)^2 - 150*a^2*sin(d*x + c) + 61*a^2)/(sin(d*x + c) - 1)^2)/d

Mupad [B] (verification not implemented)

Time = 10.28 (sec) , antiderivative size = 283, normalized size of antiderivative = 2.38 \[ \int (a+a \sin (c+d x))^2 \tan ^5(c+d x) \, dx=\frac {4\,a^2\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d}-\frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{4\,d}-\frac {\frac {15\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{2}-22\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\frac {61\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{2}-36\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {61\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}-22\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {15\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+14\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}-\frac {31\,a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{4\,d} \]

[In]

int((sin(c + d*x)^5*(a + a*sin(c + d*x))^2)/cos(c + d*x)^5,x)

[Out]

(4*a^2*log(tan(c/2 + (d*x)/2)^2 + 1))/d - (a^2*log(tan(c/2 + (d*x)/2) + 1))/(4*d) - ((61*a^2*tan(c/2 + (d*x)/2
)^3)/2 - 22*a^2*tan(c/2 + (d*x)/2)^2 - 36*a^2*tan(c/2 + (d*x)/2)^4 + (61*a^2*tan(c/2 + (d*x)/2)^5)/2 - 22*a^2*
tan(c/2 + (d*x)/2)^6 + (15*a^2*tan(c/2 + (d*x)/2)^7)/2 + (15*a^2*tan(c/2 + (d*x)/2))/2)/(d*(8*tan(c/2 + (d*x)/
2)^2 - 4*tan(c/2 + (d*x)/2) - 12*tan(c/2 + (d*x)/2)^3 + 14*tan(c/2 + (d*x)/2)^4 - 12*tan(c/2 + (d*x)/2)^5 + 8*
tan(c/2 + (d*x)/2)^6 - 4*tan(c/2 + (d*x)/2)^7 + tan(c/2 + (d*x)/2)^8 + 1)) - (31*a^2*log(tan(c/2 + (d*x)/2) -
1))/(4*d)